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Write using black or blue pen
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Total Marks — 84 : Question 2 (12 Marks) Use a SEPARATE writing booklet Marks
Atternpt Questions 1-7 -

All questions are of equal value i ‘
4 4 (a)  Evalvate Iirg( —S‘; 4x +cos x] . 2
Begin each question in a SEPARATE writing booklet. Extra writing booklets are available. - *

Question 1 (12 Marks) Use a SEPARATE writing booklet Marks K
(b)  The security lock of a building has 12 buttons labelled as shown.

[A] =] [
(b)  Differentiate Sxtan™ x with respect to x. 2 @ tg_f F]
o] ] [1]

(a) Indicate the region on the number plane satisfied by y 2 ]2x - SE . 2

(©) Solve the inequality ﬂ% <2. 3

x— o

<] [+
(d) Use the substitution # =16 - x* 1o find j': 16— x* dx. 3

’ Each person using the lock is given a 4 letter access code.
[6)] How many different access codes are possible if the letters can be 1
repeated and their order is important?

(6] The interval AB has endpoints A(3,2) and B(4,5). Find the coordinates 2

of the point P which divides the interval AB externally in the ratio of 3: 4.,

(iiy  How many different access codes are possible if letters cannot be repeated 1
and their order is important?

(i)  Now suppose that the lock operates by holding 4 buttons down together, 1
so that the order is not important. How many different access codes are
possible?

Question 2 continues on page 5
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Question 2 (continued)

)

"The diagram shows the graph of the parabola x* = 4ay . The tangent to the
parabola at P (Zap, ap’) cuts the x-axis at 7. The normal to the parabola at P
cuts the y-axis at N,

0] Show that the equation of the tangent at P is y = px— ap® and find the
coordinates of T.
i)  Show that the coordinates of N are ((3, alp*+2)).

@iii) Let M be the midpoint of N7. Find the Cartesian equation of the locus
of M and describe this locus geometrically.

Marks
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Question 3 (12 Marks) Use 2 SEPARATE writing booklet Marks
(8)  When the polynomial P(x) is divided by x* - 5x+ 6, the remainder is Sx+2. 3

What is the remainder when P(x} is divided by x~27

»"‘-7‘
(b)  Show that the expression 3
sin30 00830 G620, cosh0
sin g cos &

is independent of &.
{c)  Find the derivative of log, (cos x). Hence find the area enclosed by the carve 3

» = tan x, the x-axis and the lines x =0 and x = —25
(d)y A plane is observed in the air at point P, 500 metres above ground level. 3

An observer standing at A observes the plane at an angle of elevation of 32°.

A second observer at B observes the angle of elevation of the plane to be 24°,

Aisdue Bastof Q. Bis §42°Eof Q.

P
Diagram not to scale
SOOmi
0 A
B,

Calculate the distance from A to B. Answer to the nearest metre,
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Question 4 (12 Marks) Use a SEPARATE writing booklet ' Marks

(@)  ABand CD are intersecting chords of a circle. CD is parallel to the tangent
to the circle at B.

AN

(i) Copy this diagram into your writing booklet.

(i)  Prove that AB bisects LCAD 4

(b)  Using the substitutions for ¢ = mng , solve the equation 4

3cos@+5sind=4, 0627

{¢)  Use the principle of mathematical induction to prove that 4
4" +14 is amultiple of 6 for n21.

Question 5 (12 Marks) Use a SEPARATE writing booklet

(a)

()

©

Solve the polynomial equation x* —12x* +12x+ 80 =0 if the roots of this
equation are in arithmetic progression.

The function g({x}is given by g{x)=sin™ x+cos™ x, 0<x <1

)] Find g'(x)

(i)  Sketch the graphof y=g (x).

An egg at room temperature, 20°C is placed in a saucepan of boiling water

which is maintained at 100°C. When the egg has been in the boiling water for

1 minutes the internal temperature of the egg is T°C. The rate at which the internal
temperature of the egg rises is proportional to the difference between the egg’s
internal temperature and that of the boiling water i.e. T satisfies the equation:

% = k(T ~100), where k is a constant.

{iy  Show that T =100+ Ae" satisfies the equation.

(ii)  The internal temperature of the egg rises to 60°C after 10 minutes.
Find the values of A and k.

(iii) How long does it take for the internal temperature of the egg to reach 90°C?

(iv)  What would happen to the internal temperature of the egg if the egg was left
in the boiling water indefinitely? Justify your answer.

Marks
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Question 6 (12 Marks) Use a SEPARATE writing booklet

(ay

(&)

Grain is ponred at a constant rate of 6 cubic metres per minute. It forms a conical
pile, with the semi-vertical angle of the cone equal to 60°. The height of the pile
is h metres and the radius of the base is r metres.

Diagram not to scale

()  Showthat r=+/31.
(it  Find an expression for the volume of the pile.

(iii)  Hence find the rate at which the height of the pile is increasing when the
height of the pile is 3 metres.

Consider the function f{x)={x~1 -4, x20

6] Sketch the function showing clearly any intercepts and the coordinates
of its vertex, using the same scale on the x and y axes.

(ii)  What is the largest domain, containing x =2, for which the function has
an inverse function £~ (x)?

(ili)  What is the domain of the inverse function f (x}?
(iv)  Sketch the graph of y = f{x}on the same set of axes as part (i).
(v)  Find the equation of the inverse function as a function of x.

(vi)  Find the x-coordinate of the point of intersection of the two curves y = f{x)
and y= f7(x).

Marks
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Question 7 (12 Marks) Use a SEPARATE writing booklet Marks
(@)  The region enclosed by the curve y = sin™ x and the y-axis between x =0 5
and x= ig is rotated about the y-axis to form a solid. Find the volume of this solid.
b) Let each different arrangement of all the letters of the word “DELETED” be
considered a word,
) How many words are possible altogether? 1
(i)  In how many ways can the three Es be together? 1
(iii)  Show that there are 240 ways that two Es can be together and one separate. 3
(iv)  What is the probability that all the Es are apait? 2
End of paper
8
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(i)

(iif)

!
No restriction: 7 letters with 2Ds and 3 E’s fe 5’{—5—‘ =420
All Es together ie (EEE) X X X X where X represents a letter from D LT D.

|
There are 5 objects with 2 repetitions ie —% =60

LetX représent a letter from D L. T D and § represents a space.
ALTERNATIVE 1

: 1
Arrange the letters D L T I — this can be done in g—;m 12 ways.

Now SDSLSTS D S is one such possible arrangement.
To keep EE and E separate, we have to choose 2 spaces to insert them.

This can be done in *C, =10 ways.
Then the EE and E could be swapped in 2 ways.

1
Total %x SC, x2=12%x10X 2 = 240

ALTERNATIVE 2

Case §: (BE X E) X X X ie group the EE and E with one letter between them.
There are 4 choices for the X between EE and E and then we have 4 objects with 2
repetitions.

. 41 !
ie 4% 2 =48 , However the EE and E could be swapped making it 4 x % %2 =96

Case 2: (EE X X E) X X ie group the EE and E with two letters between
them. There are *F, =12 amangements of the X between EE and E and then we have
3 objects with 2 repetitions.

3t
fe 12x—=136.
. 2!

!
However the EE and E could be swapped making it 12 x % x2=72

Case 3: (EE X X X E) X ie group the EE and E with three letters between
them. There are *P, =24 arrangements of the X between EE and E and then we have
2 objects with 2 repetitions

!
ie 24><2—'=24.
21

!
However the EE and E could be swapped making it 24 X -% X2=48

Case 4: (EE X X X X E) ie group the EE and E with four letters between

4
P,
them. There are —2—: =12 arrangements of the X between EE and E, given

1
2 Ds. However the EE and E could be swapped making it —2—2—47 X 2=24
Total 96+ 72 +48 +24 =240

2007
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ALTERNATIVE 3

Case 1: EEX (BE) (E) (B} (B)

ie there are 4 possibilities for the position of the second E and then the other letters
need arrangement.

LM
e 4X§;-48

Case 2: X EE X (E) (B) (B)
ie there are 3 possibilities for the position of the second E and then the other letters
need arrangement.

1
ie 3% i =36
2!
Case 3: (E) X EE X (E) (E)

ie there are 3 possibilities for the position of the second E and then the other letters
need arrangement.

41
it Ix— =36
2t

Case 4: (B) (B)XEEX (B)
ie there are 3 possibilities for the position of the second E and then the other letters
need arrangement.

t
ie 3><—4——'=36
21

Case 5: EYEYE)XEEX
ie there are 3 possibilities for the position of the second E and then the other letters
need arrangement.

1
ie 3xi=36
21

Case 6: (E) B) (B} ) XEE
ie there are 4 possibilities for the position of the second E and then the other letters
need arrangement.

1
ie 4><ix48

21
Total 2 x48 +4 %36 =240

ALTERNATIVE 1
From (ii) and (iii) the number of ways of having all the Es apart is
420 (60+240)=120.

So the probability of having all the Es apart is %«% = % .
ALTERNATIVE 2

1
Arrange the letters D L T D — this can be done in % =12 ways.

Now 8D S LS TS DS is one such possible arrangement,
To keep ALL the Es separate, we have to choose 3 spaces to insert therm.

This can be done in *C, = 10 ways.

41
Total ETX C,=12x10=120.

So the probability of having all the Es apart is %—% = %-
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